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Abstract

The pe@_rmance of an explicit algebraic stress model is assessed in ptvdict-

ing the turbulent flow and roared heat transfer in straight ducts, with square.

rectanyular, trapezoidal and triangular cross sections, under fldly developed con-

ditions over a ranye of Reynolds numbers. Iso-thermal couditions are intposed

on the' duct walls, and lh_ turbulent heat fluxes ar_ mode hd by gradient-diffusion

type modcIs. .*tl high Reynold._ number._ (_>10'_), wall functions are used for the

v(locity and temp(ratuTv .fields, whih at low Reynolds numbcr._, damping func-

lions are inttvdueed into th( models'. Hydraulic parameters such as friction

factor and Nusselt number are well predicted, even when damping functions ar_

used, and th_ present formulation imposes minimal demand on the number of

grid points without arty cont,erye _c( at' stability ptvbl( ms. ('amparison b_twee n

the models in pr'e._ented in terms of the hydraulic paTwmtle rs, fl'iction factor and

•Yus._ell number, as well an it_ terms of lhe secondary flow patterns occurring
within the ducts.

1. Introduction

The l)erformance of a turbulence rnodel in I)redicting the velocity and teml)erature

fields of relevant industrial l)roblems has become increasingly imt)ortant during the

last few years. This improve(t l)redictive performance is also true for turbulent duct

flow, which occurs frequently in many industrial applications, such as compact heal

exchangers, gas turbine cooling systems, cooling channels in coml)ustion chaml)ers.

nuclear reactors, and others. The cross section of these ducts might be both orthog-

onal (square or rectangular) and nonorthogonal (such as trapezoidal), in which the

generated flow is extremely complex. Sometimes, the ducts are also wavy or corru-

gated in the streamwise direction and might be manufactured with ribs to achieve

faster transition to turbulence.

Several fundamental studies of turbulent flow in square and rectangular ducts exist

in the literature. Direct numerical simulations have been carried out for a square duct

by Gavrilakis (1992) and Huser and Biringen (1993) with Reynolds nmnbers of 4410

and _ t0 4, respectively. Large eddy simulations for square and rectangular ducts have

been reported by Madabhushi and Vanka (1991) at a Reynolds number of 5800, and

by Su and Friedrich (1994) and Meyer and Rehme (1994) at Reynolds numbers up

to 4.9 × 10 4. Nevertheless, limitations on computational power and memory make it



almost impossibleto directly solvefor the turbulent flow field in practicalengineering
duct flows using a direct numerical simulation (DNS) approachfor the foreseeable
future. Largeeddy simulations (LES) may be more tractable; althoughto date. their
use has not been widespread. Thus, ttle prediction of the flow and heat transfer
characteristicsin engineeringduct flowsstill requiresa Reynolds-averagedapproach
using suitable turbulent closuremodelsfor both the velocity and temperaturefields.

It is knownthat secondarymotionstake placein the cornerof noncircutarstraight
ducts in the planeperpendicular to the streamwiseflow direction. Thesemotionsare
turbulence-inducedand arecommonlyreferredto asmotionsof Prandtl's secondkind.
Suchmotions areof importance sincethey redist.rit)utethe kinetic energy,influence
the streainwisevelocity, and thereby affect the wall shearstressand heat transfer.
The effect of secondary motions of Prandtl's second kind on the wall shear stresses

and heat fluxes increases considerably when the ducts are corrugated. A linear eddy

viscosity model (LEVM) does not. have the ability to predict secondary flows, but

still it is one of tile most popular models among engineers owing to its simplicity

and overall good performance properties. Previously, Rokni and Sunddn ( 1996, 1998)

employed a nonlinear eddy viscosity model (NLEVM) for predicting tile flow and heat

fluxes in straighl and wavy ducts with trapezoidal cross sections. This level of closure

accounts for the Reynolds stress anisotropy and is then able to predict the secondary

ttows within the relative cosl of a two-equation formulation.

In the study reported here, the earlier work of Rokni and Sunddn (1996, 1998)

is extended to arbitrary ducts by using an explicit algebraic stress model (EASM).

The method is apl)tied to square, rectangular, trapezoidal, and triangular ducts with

iso-thermal wall conditions using gradient-diffusion type heat flux models. The heat

tlux models are a sinlple eddy diffusivity model (SED), a generalized gradient dif-

fusion hypothesis ((;GDII) model, and a model extracted from the empirical WI':T

hy.'l)othesis (Launder 1988). The EASM ret)resentation is used for both low- and

high-t{evnolds numbers without introducing any dampillg functions into the tensor

representation for tile Reynolds stresses; however, at low Reynolds numbers, damping

functions are introduced into the isotropic eddy viscosity and the heat flux models.

At high Reynolds numbers (>-,105), wall flmctions are used for both the velocity and

temperature fields..]ayatilleke's P-function (1969) is not used because it. is shown to

be a main source of error if wall fnnctions are used for (numerically) predicting the

friction factor in ducts.

One difficulty associated with turbulent convective heat transfer and fluid flow in

ducts is obtaining satisfactory results for both friction factor and N_-number, if wall

functions are used. l;sually, either fl'iction factor or :\:u-number can be predicted

satisfactorily, but not both of theln. Another problem with using wall functions in

complex geometry (duct) flows is the varial)ility of the minimunl y+ value ahmg tile

grid line adjacent to the boundary. (See, e.g., Rokni and Sund&l, 1996.) [Tnih)rmity

can be achieved by setting the grid points adjacent to the wall in certain positions;

however, while this pla.cement is easily done in orthogonal geometries, it is extremely

difficult in nonorthogonal geometries. Alternatively, low-Reynolds number versions of

the models usually cannot be extended to Reynolds numbers ->104 based on hydraulic:

diameter (see e.g., Rokni and Sundbn, 1999b). Therefore, it is desirable to develop a
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model that not only predicts thesehydraulic parameterssatisfactorily, but that also
can be used for a very wide rangeof Reynolds numberswith lessdemandon the
numberof grid points and without any convergenceproblem.

o

developed turbulent flow and heat transfer in the three-dilnensional duct flow.

governing equations for the mean and turbulent quantities are

Op 0 i"+ .T--(p ,J)= o,o-7 u,r j

Mean and Turbulent Equations

A Reynolds-averaged Navier-Stokes (RANS) approach is used to predict the flflly

The

(])

0--7-+ _(e '_ :_)- + [ \o,,._ _/j + o.,'a0._ _ /' + -- (-:,_), (2)

[..J'] .O(/,T_____)0 (:,1'.;7') - 0 P,. + -- (-/,,,,t). (3)O, + 0:,,.--7_, O<i O<iJ O.r.i "

The turbulent stresses Dri.j (= -pu/uT) and lurbulenl, heal fluxes (pcp,il) require

modeling in order to close the equalions.

For the modeling of the Reynolds stresses pri.i, within the context of a,n algebraic

stress formulation, transporl equations for the turbulent kinetic energy and t,urbulenl

dissipation rate are needed:

o.... °[/ ,',/""10--7 + _(/,l.J_.) - &,j /, + + &. - pe. (4)c**./ &,._]

[( ] ,O (el, ) - 0 /,,_ oe (' e-&-.h(7_,/,_. (5)
-- -}- ():g:.] ();F j II -]- G_ /. _ -it- el /_:

where Pa. = pruOl:i/Ox.i is the t)roduction term. The constants (",l and ('_2 are

set to 1.44 and 1.83, respectively, and the turl)ulent eddy viscosity is calculated as
• , /,2

tit = P.I:,(,-- where (,, _ 0.09. The functions .[l, ./'2, and f, are dampingfunctions

and are equal to unily in the fully turbulent region. In this study, the Abe-I,2ondoh-

Nagano (1995) tbrmulations for .fl, ,]'2, and f, are used and are given by

= - , f.= 1-e.-@ l+(th,)o.r_

(o)
where

it,_ pd pk 2

Y+= "_ = -7' R_:t- tic 7)

and d is the normal distance to the nearest wall. When the AKN model is used, the

constants _. and cr_ are both set to 1.4, and all the remaining constant coefficients are

calibrated against the DNS channel flow data of Kim et al. (1987). At high Reynolds

numbers, era.= 1 and a_ is determined from n ((_2 - ('<)].



Tile explicit algebraicstressmodelusedis anextensionof the Gatski and Speziale
(1993) model and is describedin Rumseyel, al. (1999). In terms of the turbulent
stressanisotropy [ij, it can be written as

[iJ -- 2]¢ 3 -- Ol'q'iJ + 02 (SikI'l'_.j -- |"l'ikSkj) + 03 SikSI,.j -- {S2}_ij , (8)

where ,c';ii and Wij are the mean strain rate and rotation rate tensors, respectively

(£'ij + lt'ij = OUi/O,rj). Tile oi's are scalar coefficien! functions of the invariants

,/2 (= NLi£'ij = {S2}) and _2 (= ll;.ji1, i = _{W2}), and are given by

a I ,72 al + _el - 2al,l'2r2"?o -- 2q2r 2 - "1_2(.l'.2 2 o I + - 0
"lt;t I r 4")211472 • 431_714r

(9)

(t 2 = (/4(/2(11 and aa = --2a403(_:l (10)

where
k

a l = 0.487, a2 = 0.80, a3 = 0.375, (/4 = gr, r = - (1t)

_e_ [ ]-'
'l'_ -- 712, g = ")1 - 2%c_1712r , % = 1.19 and "?l = 0.7. (12)

The proper choice for Ol is the minimum real root of Eq. (9) (./ongen and Gatski

1999).

Three different lnodels are used to provide closure for the turbulent heat flux term.

The tirst is an isotropic, simple eddy diffusivilv (SED) model based on the Boussiltesq

al)l)roximation.
ll_ OT

.j t = - (t3)
po" T Oa'j

where the turbulent Prandtl number for temperature _r is set to 0.89. The second is

a model based on a generalized gradient diffusion hyt)othesis (GGDtI),

=-(.,- (14)

and the third model is based on the WET method and is given by

__ k ( OT __Ol:i "_,,at=-Ct- uSuk_+ukt_) , (15)

where (', = 0.3 in both the GGDH and the WET models. At low Reynolds numbers,

a damping fimction for the SED model (,1"_) is included in the turbulent eddy viscosity

tit, and for the GGDH and WET models, a damping function f,T is introduced. This

damping function is a Lam-Bremhorst (LB) (1981) type model which is given by

.['u.T = (1 e-O'O22"_R_k)2 ( 4_71¢)- 1+ , (16)



where Re:,. = pvi_d/B. If the same number of grid points was used in the cross

section, it was found that using tile LB model in the GGDH and WET closures gave

better results than the AI(N model for flows where /Te: > 10 4. Note that the WET

model is implicit, and the resulting system of equations for the heat fluxes are solved

analytically in each iteration (no munerical inner iteration loop).

Both friction factor and Nusselt number have been obtained from the computa-

tions. The calculated fl'iction factor is thus related to the Prandtl-taw (hicropera and

l)eWitt 1996) as

, (#)= "2log Re - 0.8. (17)

The R_ number is based on the hydraulic diameter defined Rn' lwo or lhree walls as

Oh -- 2, o1" D_, - ,, , (18)
o + _i,,_,, a + b + .,i,,(._,

where a, b, h, and 0 are base length, upper length, height, and base angle, respectively.

The reDrence to two or three walls is to lhe number of walls in the cross seclion when

symmetry conditions are used, and .4_,.,,s_is the cross-seclion area which can 1)e defined

as 0.5(e + h)for all cases considered here.

The calculated Xu-nuniber is related to the Dilt.us-Boelter correlation (Incropera

and I)eWitl 1996)by

:\:, = O.02:}R_°'SlJr °':_ for He _ 8000 (1.q)

At high Reynolds numbers, the law of the wall is assumed to be valid for both

the velocity and temperature fields in the near wall region (see Rokni and Sun(l&l

(199(5, 1999a) for iniplenmntalioli details). While lhe log-law behavior is assumed

for the velocity field, the t.eml)erature field can be treated by either of lwo niethods.

One is the usual log-law behavior, and the olher is the coinmonly used /°-function

(.layatilleke, 1969) iliethod. By using the latter a.l)l)roach, the teml)erature field is

given 1)v

(T,,, /, +,'(P" I
(t,,' L \ G T / J

where the P-function can t)e expressed as

P 7-r-r .. - 1 1  .Tj ,

and err = 0.89. This method is very polmlar, especially in COlmnercial codes: however,

two disadvantages of the method in duct flows are that the telnperature field will be

directly' dependent on the velocity field, and that the vou Karman coustanl h ula_'

play a significant roll in the determination of the :Yu.-nund)er. Figure 1 clearly shows

the effect, of the h value on the calculated fl'iction factor and \u-number in a square

duct (using the EASM and the SED model). A queslion that now arises is which

value of the yon Karman constant should be chosen. A vahle of h" = 0.408 gives the

best result, for the fl'ict.ion factor; _,"= 0.46 gives the best result for the Nu-number.
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Figure 1. Calculated friction factor and Nu-number compared with exl)erimental

correlations in a square duct using EASM, SED, and two near wall treatments for

the leml)elature field.

Rokni and Sund6n (1996) assumed an average value of tc = 0.435. In light of this

ambiguily, the former a pl)roach of assuming a log-law behavior for the temt)erature

tiehl will he used here.

The numerical method is based on the finite volume technique, with a nonstag-

gered grid arrangement. The SIMPLEC algorithm is used for pressure-velocity cou-

pling. A modified SiP method is implemented for solving the equations. The Ql:I('h:

scheme is used for treating the convective terms in the momentum equation. How-

ever, to achieve stability in the k and _: equations, a hybrid scheme is used for the

convective terms. A further discussion of the specification and imple,nentation of the

boundary conditions, as well as the numerical procedure used in the solution of the

mean and t.url)ulent equations, can be found in Rokni and Sunddn (1996, 19991)).

3. Results

Straight ducts with square, rectangular, and trapezoidal cross sections, and a wavy

duct are considered in this investigation. Only one quarter of the duct with square

and rectangular cross sections and only half of the duct with a trapezoidal cross

section are considered by imposing symmetry conditions. Sketches of the various

duct configurations are shown in Fig. 2. The calculations focus on fully developed,

three-dilnensional, turbulent duct flow. Results of mean velocity, and friction factor

and Nu-number distributions are presented, the latter two quantities being the most

important hydraulic parameters from an engineering standpoint. In addition, the

secondary flow generated within the ducts is also analyzed.
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Figure 2. Ducts under consideration.

3.1 Grid Sensitivity

A nonuniform grid distril)ution is employed in the plane 1)erpendicular to the main

flow direction. Close to each wall, the number of grid points or control volumes are

increased to enhance the resolution and accuracy. From the duct center to each wall,

the grid distance is multiplied by a stretching factor (ST) less than unity. Thus, the

smaller this factor, the more grid points are concentrated near the wall (i.e., finer grid

near wall). A different number of grid points was used in the cross-sectional plane

in order to establish the accuracy of the calculations. Table 1 shows the calculated

Nu-number and friction factor in a square duct with different stretching factors and

number of grid points, when using the EASM. The calculated Nu-number (by GGDH)

and friction factor are compared with the correlations mentioned in previous sections.

In the table, Nur)B stands for Nu-number calculated from the Dittus-Boelter corre-

lation, and .fp,. stands for friction factor calculated fi'om the Prandtl-law correlation.



As isevidentfrom Table 1,decreasingthe stretchingfactor (insertingmoregrid points
in the viscoussublayers)for a specificnumber of grid points increasesthe accuracy
of the calculations. For example, using 31 x 31 grid points with stretching factor
0.85yieldspredictions asaccurateas35 × :35numberof grid points with a stretching
factor of 0.9. In this study, 31 x :31grid points in the crosssection with different
stretching factors (dependingon the Re number) has been used. If wall functions

Table 1. Calculated friction factor and Nu-nund)er for a square duct with different

munl)ers of grid points and stretching factors using low Reynolds version.

ST Grid He f × 103 fPr × 10 a diff %" GGDH NUDB diff' (X"

0.9 21 × 21 4561 10.098 9.602 -5.2

0.9 31 x 31 4588 9.981 9.586 -4.1

0.9 35 x 35 460:3 9.915 9.576 -:3.5

0.9 41 × 41 4615 9.864 9.569 -:3.1

0.9 51 x 51 4(i19 9.847 9.567 -2.9

16.3 17.6 7.4

16.2 17.7 8.5

16.2 17.8 8.9

16.2 17.8 9.0

16.2 17.8 9.0

0.9:1 31 × :31 4549 10. t5:1 9.610 -5.7 16.6 17.:3 4.0

0.85 31 × 31 4604 9.912 9.576 -3.5 16.3 17.8 8.4

0.85 41 × 41 4607 9.900 9.574 -3.4 16.3 17.8 8.,I

"diff 9; = 100 x (correlaled calculated)/correlated

were used (H_ > 104 based on hydraulic dianleter), 21 × 21 to 31 × 31 (depending

on the He mlml)er) grid points were suiticient to ot)tail_ reasonable accuracy for I)ot h

the friction factor and .\'tl-llUllll)er ill the square ducts.

3.2 Square Duct

The square duct is the least complicated geometry to be studied here. The flow

and heal transfer results i)resented here show the wide range of Revnotds numbers

over which the current formulation can be successftlllv used.

3.2.1 Secondary Flow Patterns

In Fig. 3, the secondary flow pattern (velocity vectors) in the fully' developed re-

gion of a square duct is shown at a Reynolds number near 4800. The results predicted

by the EASM (with damping functions) are in excellent qualitative agreement with

the DNS study of Mompean et al. (1996) and Gavrilakis (1992). Similar secondary

flow patterns are predicted at both the low and high Reynolds numbers considered.

As is well known, in laminar flow these secondary motions do not occur. In tm'-

1)ulent ftow. the forces driving the secondary motion are concentrated in the region

close to each corner. These motions are generated by gradients of the normal tur-

1)ulent stresses. However, the linear k - _: model (LEVM) (see e.g., Rokni, 1998)

does not correctly predict these secondary motions because of its inability to accu-

rateh' account for the individual normal Reynolds stresses tliIl i. The LEVM yields
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Figure 3. Predicted secondary motion velocity vectors in a square duct for th near

4800.

the physically incorrect expression _ = _,1--== 'u,'u:. It is worthwhile to point out that

secondary motions are found with LE\:M; however, they are ext, remelv small, about

1()-4<,)[, to 10-3% of the streamwise ttow, and ca.ni|ot normally l>e detected. These

very small motions lie in the limit of nunlerica.l/computer accuracy (absolute values

of 10 -_ - 10-r). While the redistribution of the turbulelll kinetic energy into the

normal components of the Reynolds stresses is important in correcth' predictillg the

secolidary flow I)at, tern, it, is equally inlportant, that the Reynolds shear stress coin-

portent be accurately predicted. The t.url)ulent shear stress is the essential element

in the production of the turlmlent kinetic energy and as such determines the overall

t.url)ulent energy level of the flow.

The predicted secondary velocity profile using the EASM, combined with both

the wall functions (/?{ = 7.1 × 104) and damping functions (He = 5600), is shown

in Fig. 4. (Since the velocity vectors in the low /_{7 case are smaller than in the

high He' case, the results from the low H_: case have been magnified (×10) for easier

comparison of the corresponding flow patterns.) In both Reynolds number cases,

the secondary motions consist of two counter-rotating vortices which t.ransport high

n]omentum fluid towards the duct corner along the bisect.or and then outwards along

the walls. The difference between the two Reynolds numbers lies in the spatial extent

of the vortices within the duct.

At low Reynolds immbers, the secondary flow close t.o the duct. center is weak,

and its influence on the streamwise flow is sn]all; however, the secondary motions

concentrated near the duct corners are strong and their effect oi] the streamwise flow

is large (see Fig. 5). Nevertheless, even with the existence of the two counter-rotating

vortices, very close to the corner, a. small region of stagnant flow exists. Such a region

is a.n artifact of the symmetric structure of the counter-rotating vortices in the square

duct. As will be seen in the results from the more complicated duct. geometries to I>e

analyzed, such a. symmetric structure no longer exists, and the corner flow pattern
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is nlore complicated. Figure 5 shows the effect on the streamwise velocity contours

([:/[:b,ik) predicted by the EASM using both the wall function and damping function

apl)roach. As can be seen for the high Reynolds number case, using wall flmctions

rather than damping functions increases the predicted st.reanlwise velocity along the

corner bisector toward the corller.
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Figure 5. Predicted streamwise velocity contours using EASM a,t two different

Reynolds numbers and using different near-wall treatments.

3.2.2 Hydraulic Parameters

The accurate prediction of the friction factor and Nu-nmnber is an important

consideration in assessing turbulent model performance. In this subsection, the results

of t,h(' conlputations using both wall functions and (la,mping functions are presented.

10



The calculated friction factor and Nu-number at high Reynolds numbers using

wall functions are shown in Fig. 6. Tile friction factor obtained from the EASM is

in excellent agreement with the Prandtl-law correlation. However, the model could

not be applied for R_: numbers less than about 2.0 × 10 4 due t.o the large distance

between tile wall and tile nearest adjacent points.

Both the GGDH and WET methods are in excellent agreement with the Dittus-

Boelter correlation (less than 3% deviation), while the NED method deviates some-

what more fl'om this correlation (see Fig. 6). The GGDH and WET models could

not be applied for Re: illllll])el" less thau about 2.0 x 104 without additional numerical

manipulations, e.g., using the results from a higher He nulnber as input data for the

lower Re numt_er.

,'_ 10

Figure 6.
fuuct ions.
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10
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• GGDH & WET

i i i I i J ] I i
t{}

Re x 10 -4 Re x 10 -4

i

10

(:alculated friction factor and N,-number using the EASM with the wall

One problein associated with using the wall flmctions is that the grid points ad-

jacent to a. wall should be a. certain distance away from the nearest wall. to get the

average y+ value in an acceptable range (g+ > 35: see Fig. 4). Tile problem is more

evident when the ducts are wavy and/or have trapezoidal cross sections. This prob-

lenl can be alleviated by using tile EASM presented here. Nevertheless, lhe damping

function requirement of calculating ttle normal distance from any point to the nearest

wall is not an easy task in general geometries.

Figure 7 shows thai the calculated friction factor using the EASM is able to

captures the Prandtl-law correlation (a.!)out 5% over-predicted). The figure also shows

that the Nu-number, obtained fl'om the CGDH and WET methods, agrees rather

well with the Dittus-Boelter eorrela.tion, while tile SED method gives less accurate

results. It should be mentioned that the GGDtt and WET models underpredict tile

Ditt.us-Boelter correlation for Re numbers less than about 8000. The experimental

work of Lowdernfilk et al. (1969) also shows that the Nu-number in square ducts

11
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underl)t'edicts from tile Dittus-Boelter equation for t(¢ numbers less than about 8000.

The present.ed calculation procedure is highly stable and can be extended to a

much higher Re number than 104 with a minimal demand on the mm]ber of grid

points. In Fig. 8. the calculations were performed with only 31 × 31 grid points

for all llevnolds ,mmbers. No convergence prol)leIns arose ever, al very high t?_

I(X) , , I(X)
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Figure 8. Calcula.ted friction factor and Nu-numl)er using the EASM with damping

functions at high Re numbers.

numbers by using the p,'esent models. The friction factor obtained from the EASM

is over-predicted by about 5% compared to the Prandtl-law correlation, while the

1'2



predicted Nu-number by the GGDH and WET closures, agrees very well with tile
Dittus-Boelter correlation.

3.3 Rectangular Ducts

Different rectangular ducts (side ratio 2,3,5, and 10) are considered. Even in

these cases, if tile GGDH and WET models are used, both the frier.ion factor and

Nu-ntunber predicted by the EASM agree very well with tile theoretical correlations.

If tile SED model is used. the ,_-u-number is under-predicted 1)y about 15%. In Fig.

9, the secondary flow motion for two rectangular ducts wil.h aspecl ratios of 3 and 5

are shown. The secondary motion velocity vectors predicted by the EASM, with the

AKN damping functions in l.]le k- _ equations, are in good agreement with what

has been observed in some experimental results. The existence of such secondary

flow patterns was first observed by Nikuradse during his experiment with noncircular

ducts (see I(a.kaq el. a.l., 1987).
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Figure 9. Predicted secondary motion velocity vectors in rectangular ducts with

aspect, ratios 3 and 5 using EASM with da.mping timer.ions.

Table 2 provides calculated Diction factor, :Vu-numt_er and the center-to-lmlk-

velocity ratio (Uc/(:b) in a. rectangular duct with different aspect ratios. For a given

cross section, the U:/l:_ decreases slightly with increasing Re number, which is also

evident from this table. The experimental value of l:_/l,r_ for a rectangular duct with

aspect ratio 8 at /_c _ 5800 is 1.23 (see Rokni el: al.. 1998) which can be compared

with the calculation result (Table 2) 1.22 for aspect ratio 10 at Re _ 1.;572 × 104 .
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Table 2. Calculatedfriction factor and Nu-number for rectangular ducts with differ-

ent aspect ratios using EASM and GGDH.

Aspect Ratio Re x 10 -4 f x 10 3 N'u l.;c/U_

2 0.9397 8.165 30.4 1.28

3 1.1474 7.797 35.8 1.28

5 1.3666 7.541 41.2 1.27

10 1.5717 7.401 47.3 1.22

3.4 Trapezoidal and Triangular Ducts

The velocity vectors and tile corresl)onding mean flow contours predicted I)y the

EASM in a tral)ezoidal duct are presented ill Fig. t0. As shown in the figure,

there exist two counter rotating vortices close to each corner that are similar to tile

results obtained by Rokni and Sun(l&l (19.¢)6). Only 61 × 31 grid points were used

in lhe cross section to perform the calculation. Since the LB damping fimctions

had convergence and stability problems regardless of grid arrangemenl in the cross

section in the trapezoidal ducts, the AKN damping functions were used. In Fig.

10. the h'_ number is about 1.546 × 104. and lhe calculated fl'iction factor and Yu-

number (G(IDH model) are 7.791 × 10 -:_ and 48.1, respectively. These values can be

compared with the Prandtl-law and I)ittus-Boelter correlations, Eqs. (17) and (19),

which yield 6.900 × 10 -a and 46.8, respectively. The center-to-bulk-velocity ratio

(l',./l_,) is calculated as 1.29.

('lose to the upper side corner ("north wall" and "'high wall") there exist two

counter-rotating vortices a small one and a much larger one. The smaller vortex

size decreases when decreasing the upper side length ("north wall") until it vanishes

for a triangular duct. Correspondingly, the large vortex size increases while this length

decreases (see Fig. 11). This type of secondary flow pattern in a triangular duct was

also observed in the experiment of Nikuradse (see e.g., Kaka(;, 1987).

The highly stable nature of the calculation procedure used here makes it possible to

apply the present models to such triangular ducts and to predict turbulence quantities

without anv convergence problems. In Fig. 11 the upper side length is much smaller

than tile two other lengths (_ 2 × 10 .3 of the duct height). This length cannot be

set to zero since using structured grids in the calculations requires that no side of

any control volulne in the domain be zero. Nevertheless, this very small Ul)l)er side

length would still yield the correct limiting behavior of a sharp corner and would be

a case in which many turbulence models would fail. The Re number in this duct is

1.16,1 × 104, and the predicted friction factor and Nu-number (GGDtI model) are

8.016 × 10 -a and 36.3, respectively. These results can be compared with the Prandtl-

law and Dittus-Boelter correlations, Eqs. (17) and (19), which yield 7.421 x 10 -a and

37.3, respectively. The center-to-bulk-velocity ratio ((_/b_) is calculated as 1.30.
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3.5 Wavy Ducts

In light of the success with the previous geomet.ries, an initial calculation on a. wavy

duct has been done to further evaluate the performance of the model and calculation

procedure presented in this study. The wavy duct under consideration is shown in

Fig. 2. A symmetry plane is imposed at the cross section with an aspect ratio 4 to 3

and sinuous variation along the ._/-direction. The number of grid points in the cross

section is set to 61 × 31 for p- and z-directions, respectively. This discretization is

similar to the number and distribution of grid points used in the cross section for the

trapezoidal duct. Close to each wall, the number of grid points, or control volumes,

is increased to enhance the resolution and accuracy. Unfortunately, due to computer
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capacity and time, only 30grid points, uniformly spaced,are set in the streamwise,
or a', direction.

For convergence, the residuals reached tile value 10 .4 for the temperature field

and 10 -_ for the velocity field and turbulence equations. The GGDIt method was

used for the temperature equation.

Tile restrictions on the streamwise resolution can adversely affect the performance

of tile solution procedure. Such inaccuracies in tile computation in some regions may

lead to large values of some key parameters which deteriorate the whole solution

field. This situation occurs here, and to obtain a converged solution, restrictions are

needed. The parameter R2 is a useful parameter for characterizing the flow. For

a pure shear flow "R 2 = 1, and for a plain strain flow Rfl = 0. In this study, the

value being calculated in the cross section of the straight square duct was 0.947, for

the trapezoidal duct, the value was 0.964, and for the triangular duct, the value was

0.958. This range of values suggests that the model will perform well since the EASM

was originally calibrated for homogeneous shear flows where R2 = 1. In the wavy

wall case, values of 'R 2 exceeding 2 and correspondingly large values of 7/ greater than

16 occur near the bend in the duct. These values yield too large values of P_./c, which

eventually destroy tile solution. Jongen and (latski (1998) correlated the behavior of

theso lhree parameters (71,_ 2, Pt./e) (see their Fig. 4), and arrived at a limiting value

for _. given I)v

5- + ,7 (22)

The limiting value for 7"_1im was -I-1.23. At lhese points P_./e can be very, large.

Therefore, R_i m = 1.51:1 is the limiting value used in the calculatiolls and this restricts

the solution of the cubic equation, Eq. (9), to values of P_./e which do not lead to a

deteriorated solution.

Tablo 3 shows the calculated Nil-number and friction factor for the wavy duct

in comparison with tile straight trapezoidal duct. Included in the table are columns

where the calculated fl'iction factor has been normalized by the Prandtl-taw. and the

calculated "%_u-numl)er has been llormalized by the Dittus-Boelter correlation. As can

Tat)le 3. (!omparison between a. wavy duct. and straight duct with similar cross

section.

Type He

Straight 13699

Wavy 8944

f × 103 fPr × 10 a .f/.fP_ GGDH NUDB A:U/NUDB

7.466 7.115 1.05 40.4 42.5 0.95

17.527 7.956 2.20 48.2 30.2 1.60

be seen from Table 3, both the friction factor and the Nu-number for the wavy duct

are nmch higher than the straight duct.

Figure 12 shows that the secondary velocity vectors at the inlet of the duct have

changed significantly, compared to the straight duct. In addition, one can assume
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that the secondaryvelocity patterns have also changedsignificantly, in the other
cross-sectionplanesaswell. The magnitudeof thesesecondaryflow patterns is about
10times larger than the secondaryflow in the straight duct with similar crosssection,
or about 10%of the streamwiseflow. Tile contours in the streamwiseflow direction

North wall

(_)

z=2 (symmetry plane) North wall

z=15 (middle plane) North wall ( b )

z=15 (middle plane) North walt

Figure 1'2. (a) Secondary motion velocity vectors at. the inlet of the wavy duct,

(b) streamwise velocity contours at. symmetry and middle planes, and dimensionless

t.enal)erature contours at middle plane of wavy duct.

are also shown in Fig. 12. The duct is moderately curved, and there is a very small

recirculation zone in the streamwise symmetry plane of the duct near the north wall;

however, no such recircula.tion exists in the middle plane. Such patlerns suggest a

complicated vortical flow field within the duct where components of vorticity in the

cross-stream and streamwise directions may simultaneously exist,.

4. Summary

The results from the numerical solution of fully develol)ed, t.hree-dimensional tur-

bulent duct flow under isothermal conditions have been presented for square, rectan-

gular, trapezoidal, triangular, and wavy ducts. The turbulent stresses were modeled

using an EASM, and the turbulent heat fluxes were modeled by the SED, GGDH and

WET methods. At. high Reynolds numbers (_10 5), wall flmctions for the velocity and

temperature fields were used. At low Reynolds numbers, the AKN daml)ing func-

tions were used for the turbulent equations, and for the turbulent heat fluxes (GGDtt

and WET methods), Lam-Bremhorst type damping filnctions were used. Compar-
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isonswith well-establishedcorrelations,extracted from experimentalstudies,showed
excellent agreementfor the hydraulic parametrs (friction factor and Nu-number).

Qualitative comparisons with observed secondary flow patterns were also found to be

in excellent agreement.

Tile calculation procedure was found to be robust, with limited demand on the

total nmnber of grid points to achieve the desired accuracy thus minimizing the as-

sociated computational cost. This procedure included the very challenging triangular

duct case, where excellent results were obtained without any convergence o1" stability

problems. Ill tile wavy duct. with trapezoidal cross section, streamwise resolution

problenls necessitated the inlposition of a limiting va.lue on tile characteristic flow

l)arameter TC Nevertheless. with this restriction, results were obtained showing the

disl inguishing features of the flltlv developed wavy duct flow as well as the contrasting

behavior to the straight duct case with similar cross section.

These results suggest that while the models for the heat fluxes can be very simple,

this simplicity does not necessarily preclude all accurate prediction of the temperature

tield. [Tnder isothermal condilions, simple gradient-diffusion models for the heat

tluxes may suffice if the flow field can be well predicted. In complex geometries such

as those examined here, it is necessary to use higher-order models for the Reynolds

stresses, since anisotropies in the turbulent stress field are imi)ortant, and simple

linear eddy viscosity models will not suffice. [ligher-order closures for the heat fluxes

Inav also I)e required in nonadiabatic cases and/or in cases where counler-gradient

heat transfer occurs. (_orresponding explicit algebraic Ileal. flux models, coupled with

oquations for the t.eml)erature variance and variance dissipation rate, could be apl)lied

to such ttows.
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